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A toroidal current distribution has nonvanishing exterior vector potential A, but zero exterior field
B=V xA=0. This property, together with the absence of fringing fields as in a cylindrical solenoid,
makes it convenient for studies involving the vector potential in a field-free region, such as the
Aharonov—Bohm effect, or the effect of A in a Josephson junction. We present an immediate general
result of magnetostatics, and use it to easily compute A for a torus, to visualize the static vector
potential for any current distribution, and to show how one can construct a current distribution to
produce any desired A. When the torus current [ varies in time, nonzero quasistatic fields E(¢) and
B(¢) are produced (E~wl/ r* and B~w?I/r?). Radiation is also produced, with the radiation pattern
of an electric dipole. The torus provides a counterexample to the common erroneous notion that if
all multipole moments of a current distribution vanish then quasistatic fields and radiation must also
vanish. We then formulate Maxwell’s equations in a way that obviates the role of gauge
transformations. This “gauge irrelevant” form clarifies the relation of potentials to current sources,
isolating the role of the transverse part of A. The general result from magnetostatics is extended to
time-varying sources, revealing a seldom recognized symmetry of Maxwell’s equations, and
showing how one can visualize A for an arbitrary time-dependent current source. © 1995

American Association of Physics Teachers.

I. INTRODUCTION

In classical electromagnetic theory, the magnetic vector
potential A is generally considered only a mathematical aid
to solving for the field B=VXA. It is the field that is real.!

However, in classical physics energy is quite real, and the
electrostatic potential ¢ is usually considered as real as the
electric field E=—V ¢. Since relativity requires ¢ and A be
components of a four vector, one should attribute just as
much reality to A. Moreover, in quantum mechanics, the
canonical quantization procedure requires the use of poten-
tials. A problem would seem to arise in those situations in
which B=0, but A#0, for there should be no classical dif-
ference, but there may be a QM difference. In spite of these
observations, the classical belief in the preeminent position
of the fields held sway until nearly 1960.

Aharonov and Bohm? first pointed out experiments to
demonstrate the reality and importance of the potentials in
quantum mechanics. There are observable differences when,
say, an electron is passed through a region of zero fields but
nonzero potentials. The differences show up in the phase of
the wave function, requiring an electron interference experi-
ment to detect.

Ever since the reality of A in quantum mechanics was
emphasized, and various experiments confirmed it,>’ inter-
est has attached to measuring A directly,? especially where
B=0. Patents have been issued for a vector potential mea-
suring device,” and a recent proposal suggests a nondestruc-
tive photon detector by “passively” measuring only A of the
photon.'® Indeed the possibility then arises of a class of elec-
tromagnetic sensors that would detect the vector potential
rather than the fields.

To investigate this phenomenon, it is useful to have a
ready current distribution that provides a working volume in
which B=0, but A#0. This is the case for the static A out-
side a torus on which flows a steady current only in the
“toroidal” direction, around the thin limb. (But it is not the
case for time varying currents.)

Two suggested detectors of A both operate via variants of
the Aharonov—Bohm effect. In place of a coherent electron
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beam split into two sub-beams enclosing magnetic flux, one
can use a superconductor with a Josephson junction. The
superconducting state is a macroscopic coherent wave func-
tion that plays the role of the electron beam. The Josephson
junction detects A since the tunneling current depends on the
phase of the wave function, which shifts when A#0. This is
the basis of patents by Gelinas.>!!

A second detector'® would employ the conventional split
electron beam along the surface of a crystal, detecting the
evanescent A of a light beam undergoing total internal
reflection.'?

These sensors work best on a time varying A. Therefore
for time dependent laboratory current sources, one needs to
know the full environment at the detector, both fields and
potentials.

A torus provides a simple source of nonzero A but zero B
in a workable volume of space. In this note we first obtain a
very useful expression for the static A outside a torus, and
for the quasistatic and radiated fields and potential when the
current varies in time. An Appendix presents the exact fields.

In the process we make useful observations in magneto-
statics and electrodynamics concerning the calculation of the
vector potential, and its relationship to sources in the light of
gauge invariance. Maxwell’s equations are formulated in a
way that explicitly incorporates gauge invariance; once in
that form questions of gauge transformations and gauge in-
variance never arise.

II. MAGNETOSTATICS

The equations of magnetostatics,

V-B=0, VXB=yu,l, (2.1)
are conveniently formulated with

B=V XA, V-A arbitrary, (2.2)
so that A obeys

VX(VXA)=V(V-A)— VA= p,l. (2.3)
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The arbitrariness in V-A means the gradient of any scalar
may be added to A without changing B (gauge transforma-
tion); it is sufficient to compute A in any gauge. Noting that
in the static case the Lorentz (V-A+d¢/dt=0) and Coulomb
(V-A=0) gauges are the same, we choose

V-A=0. (2.4)

Then A obeys Poisson’s equation V?A=— y,J, with the so-
lution

J(r')
=" 3.t
A(r)= f d’r =gk (2.5)
However the basic equations of A,
V-A=0, VxA=B, (2.6)

are the same as obeyed by B, Egs. (2.1), with A replacing B
and B replacing ugJ. Therefore A is the same function of B
as B is of uyJ. We can introduce a vector A by

A=VXxA 2.7)
and choose V-A=0, so that
B(r')
A(r)= fd3 f—_ 2.8
(= Molr—1'] @8)

Taking the curl of this shows A is given by a Biot—Savart
law in terms of B,

r—-r B(r )

A(r)= VxA(r)——J'd3 ! . (29

[r—r'f°
Thus, as an immediate result of magnetostatics, B is the
source of A just as J is the source of B. This simple obser-
vation, often overlooked, can be used to visualize A in any
situation, for A is constructed from B in the same way B is
constructed from J. One can infer features of A without hav-
ing to carry out a calculation; for example, the “right-hand
rule” determines A’s direction from that of B. And A can be
computed quantitatively in two (identical) steps: first B from
J, then A from B.

Magnetostatics admits an endless hierarchy of potentials,

V xJ= (prescribed)

VxB=]J V-.-B=0,
VxA=B V-.A=0,
VxA=A V.A=0,

V'J=07

(2.10)

each determined from the next one by the curl operation. B,
for example, is the “potential” of the “field” J, and A is the
“field” of the “current” B. This can be very useful in visu-
alizing and computing the vector potential.

The hierarchy shows that to obtain the vector potential A,
of a current distribution J; with field B,, we imagine a sec-
ond current J, equal to B, . Then A, is equal to the field B, of
J,. For any J the solution for B immediately provides the
solution for an infinite set of problems, and the hierarchy
may be summarized as

J J
B =Vx| B .
Al Al we1)
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(2.11)

Fig. 1. Torus geometry definitions.

This is a general symmetry of magnetostatics. Use will be
made of these observations in Sec. IX to construct a hierar-
chy of current distributions based on that of a torus. Equation
(2.11) also allows easy construction of many current distri-
butions which produce vanishing B but nonvanishing A. In
Sec. X, it is extended to time-varying sources and fields.

III. STATIC VECTOR POTENTIAL OF TORUS

Direct evaluation of (2.5) for a torus runs into integrals of
elliptic integrals. While these cannot be avoided for an exact
solution by quadratures, the observations of Sec. II permit a
very useful approximate expression.

The torus lies in the x,y plane, has minor radius a and
major radius b (Fig. 1). To keep B=0 outside, we require no
circumferential current in the azimuthal direction about the
symmetry axis z. The only allowed current is in the direction
of increasing a, as would be created by a tightly spaced
toroidal wire coil with an even number of counter-rotating
layers. If i,, is the wire current, and the total number of turns
is N, then the total current is /=Ni,,.

We employ the usual spherical coordinate system (r,6,¢),
a Cartesian set of axes (x,y,z), the usual cylindrical system
(p,¢,2), and occasionally the internal polar coordinates (s,a).

The field inside is

I
BB'uO

T (3.1)

and decreases across the interior. The surface current density
is K=I1/2mp=1I/2mw(b+acos a) and the current density J is
K &(s—a)a. The flux in the torus is

Mol [a
o= de B=ma? 275 & (3)
where dS=sds da, and, with u=s/a, &=alb,
1_(1_&2)1/2
8(&)= 2[ duuj 7r1+u§cosa =2 £
(3.3)

is the shape factor, 1<g<2. g—1 as a/b—0 (bicycle tire),
and g—2 as a/b—1 (holeless donut). Torus self inductance
is L =uoN2(a*/2b)g.

In the gauge V-A=0, the vector potential is given by the
curl of (2.8),

A=V x22 f 43r
4

(3.2)

¢'B(r')

— > (3.4)
solr—r'|

N. J. Carron 718



Fig. 2. Lines of A.

the integral being taken over the torus volume. A has no ¢
component. With B given by Eq. (3.1), this equation shows
A is exactly the same as the magnetic field of a single fat
wire loop coinciding with the torus with current distribution
inside the wire proportional to 1/p. When b>a, or when the
observer is at r>(b+a), this current variation within the
wire is not important, and A looks like the dipole field of an
ordinary current loop. Indeed the torus current density J is
the curl of the current density of an ordinary loop (of wire
radius a), so (2.11) applies.

The integral in Eq. (3.4) behaves as 1/r? for r>(b+a),
and there is easily evaluated to obtain

o VI Ho VI
A=4—2——3-cosl9 A,= yp= ———3-sm0 [r=(b+a)]

(3.5)

proportional to torus volume V=2?a’b. Lines of A are
sketched in Fig. 2. The exact solution in Appendix A shows
that A contains only odd powers of 1/r The next correction
to the statlc potential (3.5) is ~1/r°, smaller by a factor
~(b/r)%
Out51de the torus, A is locally the gradlent of a scalar,
—VW¥ [for the 1/r° terms, (3.5), W is

\ %1
50 T2 C08 ]. (3.6)
Thus A can be locally transformed away with the gauge
transformation

A—-A'=A+V¥=0. (3.7

However A cannot be transformed to zero everywhere in
the doubly connected space outside the torus. Due to (2.2),
we have around any closed path encircling the limb,

§ dl-A=®. (3.8)
Therefore, on the surface, the average A around the limb is
I Mo al
A—Zwa—:l;?g’ (39)
in any gauge. The largest A occurs for a=b,
A= (/421

In general, since Ax®, but B/, A outside can be in-
creased relative to any leakage B by keeping I constant and
increasing a (so long as the gap between wires is not also
increased).

The equivalence of A of a torus to B of a current loop
becomes clear by dividing Eq. (3.4) by a, and using Eq.
G.1):
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A

Io

—_—. Nl
27map|r—r’'| (3.10)

1
— A= Lo V X J d’r'
a 47
A of a torus is a times the magnetic field of an ordinary loop
with current density

I
2map

-

¢ (3.11)

and current

pnn

A. Potential on axis

(3.12)

On the z axis, A is simple when a<<b. Then the magnetic
field of a ring current (a/2b)I is'?

o 27b%(a/2b)I

B Z=I7-T— W, (3.13)
so that A, for a torus with a<<b and current 7 is
2
ma“bl
a (3.14)

A= r BTF T

A, is largest at z=0, and there is quite comparable to the
distant components equation (3.5) extrapolated back to r~b,
but smaller by about a factor 7a/b than A on the surface.

B. The Aharonov—Bohm effect

Equation (3.8) is the important relation for the Aharonov—
Bohm effect. The phase shift of an electron moving from
point P to point Q is* —(e/A)[$dl-A. An electron travers-
ing a path 1, which passes through the torus, suffers a differ-
ent phase shift dp from one traversing path 2, which does
not, by a gauge invariant amount

Sy
= % (1.2) - % ’

even though fields are zero along both paths. Therefore, the
interference pattern at Q of a coherent electron source ema-
nating from P, passing through the two slits with one torus
arm between them, differs according as the magnetic flux
between paths 1 and 2 is zero or nonzero, even though no
force acts on an electron taking either path.

(3.15)

IV. ALTERNATE CONFIGURATION FOR
EXPERIMENTS

Before proceeding to time varying currents, we note that
the observations of Sec. II aid in designing other static con-
figurations to produce a region of B=0, but A#0.

Any localized current distribution J; that produces a field
B, in a region where J;=0 can be transformed into a con-
figuration that produces an A#0 where B=0 by inventing a
different current distribution that will produce a field equal to
J;. According to the hierarchy of Eq. (2.11), the needed cur-
rent distribution is proportional to VX J;. Since practical cur-
rent sources are localized and produce a field outside them-
selves, this shows that, by constructing the new current
distribution «VxJ;, there are many ways to produce a field-
free region of space with A#0.

The torus itself provides an example. The required current
distribution is the curl of the torus current of Fig. 1, and is an
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Fig. 3. Torus with counter-rotating surface current layers. The layer flowing
in the —¢ direction is on the outer surface of the tube; the layer flowing in
the + ¢ direction is on the inner surface of the tube.

azimuthally flowing double layer on the torus surface. The
inner surface layer, say, flows in the direction ¢, the outer
surface layer in the direction —¢. B is in a thin sheet con-
fined between the layers, and is in the toroidal direction,
being a vector parallel to the current layer K of Fig. 1. As
shown in Fig. 3 the vector potential circulates inside the
torus, like the B of Fig. 1. This would provide a volume of
slowly varying A. Unfortunately, this volume is physically
inaccessible.

However, if this torus is now cut through its limb at one
place and then straightened out, we have a long narrow cyl-
inder, of length 2 b and radius a, with current flowing up its
length on the outside cylinder surface, and back down its
length on the inside. The magnetic field is circumferential
about the axis, confined between the two current sheets. The
vector potential is the same as the usual magnetic field of a
solenoid.

This configuration is itself topologically equivalent to the
torus. Instead of changing the current direction and cutting
the torus, we can stretch the torus of Fig. 1 in the z direction,
its cross sectional circle of radius a being elongated into an
ellipse, as in Fig. 4. After stretching to a length /, and taking
a—0, the resulting geometry is a “‘solenoid”’ of radius b and
length #, with azimuthal magnetic field confined between
the two axial surface current sheets. B=0 inside and outside
this “solenoid.” Inside, at cylindrical radii p<<b, A#0; out-
side (p>b), A is only the “fringing field,” significantly dif-
ferent from zero only near the ends. Inside the solenoid is a
readily accessible volume for experiments.

A inside is proportional to the flux of B, and so can be
increased by thickening the walls, as in the cylindrical torus
of Fig. 5. A inside, on or off axis, is axial and is, for /=2p;,,

Il o
A=ﬁo_1n(e_),
2w pi

S
= | K =
== ==

Fig. 4. Showing topological equivalence of torus and cylindrical “solenoid”
by stretching the torus vertically.

4.1)
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Fig. 5. Cylindrical torus with accessible region of large, constant A in the
hole (at p<p;).

A is maximized by increasing the ratio of outer to inner
radius. For practical construction the logarithm is likely to be
~1, providing a useable volume with radius p; of nearly
constant A with magnitude as large as the largest occurring
anywhere for any torus carrying the same current. If / varies
in time, B always stays zero on axis, but E,=—dA,/dt is
nonzero, providing a (smaller) region near the axis of van-
ishing B, but nonzero A(¢) and E(¢).

The value for A in (4.1) is, of course, gauge dependent,
here being in the gauge V-A=0. As written this constant z
component of A is V(zA), and so could be transformed
away. But Eq. (3.8) requires that some A would then appear
outside this cylindrical torus.

V. QUASISTATIC FIELDS

We return now to time dependent fields of a torus with
circular cross section.

If J and I vary in time, an observer in the near zone will
see the previously static A vary as I(#)/r* and give rise to an
electric field. If, further, V-J remains zero, the scalar poten-
tial ¢ vanishes, and the field is E=—0A/dt. The quasistatic
electric field pattern is the same as the static A, and, for
harmonic variation with frequency w, is proportional to
wI/r*. A displacement current ey JE/dt~ w*I/r® appears
through, say, the area enclosed in the circular path drawn
above the torus in Fig. 6. Then Ampere’s law

VxB + LB (5.1)

xB= —— .
Mol 2o’

requires there be a quasistatic azimuthal magnetic field to

balance this displacement current. Integrating Eq. (5.1) over

the area of radius p, the required magnetic field is given by

ladeE—”afd E (52)
2mpB= 3o ‘E="7 o, | dp pE;. .
Since E,~wl/p® for large p, this quasistatic B varies as
w’l/r* for large r.

This B must also be VXA. But the just determined quasi-
static B is not the curl of the quasistatic A, which vanishes.
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Fig. 6. A quasistatic azimuthal magnetic field is required on the indicated
loop due to the displacement current through it.

The field discussion thus far therefore cannot be complete,
and we need to look more closely at time-varying fields and
potentials.

In the Lorentz gauge, Maxwell’s equations reduce to the
wave equation for the vector potential, whose Cartesian com-
ponents are given exactly by the full retarded solution

= ﬂ 3. J(l",t')
A(r,t)—4ﬂ_ J'd r —]r—r’l , (5.3)
where
r—r’
t’: —| | (5.4)

is retarded time. When A is expanded in powers of b/r, and
each coefficient further developed in the low frequency ex-
pansion in powers of kb=(w/c)b, the lowest-order surviv-
ing terms are given in Appendix A, Eq. (A17). The quasis-
tatic vector potential is

Ags=e” fute ikrAstat( r),

where A, is the static vector potential of Eq. (3.5).
The quasistatic fields (lowest order in frequency) are

_ mo VI ike A
EQS_47T ypm: (2 cos 6r+sin 66),

(5.5)

VI k*
QS=4E70; E r_2 sin 060, (5.6)
also proportional to torus volume. The quasistatic B does
balance the displacement current as required by Ampere’s
law, 8EQS/0t=c2VXBQS. As seen in the Appendix, Eqg
arises from the time derivative of the quasistatic potential
Ags, but B arises as the curl of the “inductive” A which is
—ikr times Aog. However, these quasistatic fields do not
separately satisfy Faraday’s law, oBgg/dt#—VXE.
Rather, VXEqs=0, and dBqg/dt is balanced by the curl of
the part of E arising from the inductive A, which is kr times
smaller than Eqg.

These fields, valid for kr<1, are ordered according to

(5.7)

For most charge—current distributions p, J, the quasistatic
fields are simply the static fields with p(¢), and J(¢) in place
of their static counterparts. This is decidedly not the case for
a torus.
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VI. RADIATED FIELDS AND POTENTIAL

- Before computing the radiation fields from a torus we
make some general observations.

A. General comments on radiation

In any gauge, the scalar potential is not needed for the
radiated fields, since B=VXA, and E_;=—cnXB,,4, where
n is the outgoing unit vector. In the Lorentz gauge, A is
given by (5.3). The radiated vector potential is the part that
falls as 1/r, obtained by expanding 1/|[r—r’| and keeping only
the 1/r term,

_ Mo
™ g

If the time argument of J were ¢, the integral of J over all
space at one instant of time would vanish when V-J=0.
Retarded time means that wavelets emanating from different
parts of the source do not quite cancel, allowing radiation.
Retardation, of course, is the physical reason any divergence-
less time-dependent current distribution of finite extent radi-
ates.
B..q is the 1/r part of VXA _,, or

A, ar' J(r',t). (6.1)

Brad=—‘#0— VXJ’ a’r' J(r',t"). 6.2)

4r

This does not vanish even for a torus. The integral depends
on r only through ¢,

aJ 1 r-r A |

=V X == — X — .
VxJ(r',t')=Vt Py cTe=r| <o (6.3)
where we have used the gradient of (5.4). Therefore,
Mo ;, r—r oJ(r',t")
Brua= 4mcr fd r [r—r'| X at’ 6.4)

The first factor in this integrand is (r—r')/|r—r'|
=n—0(r'/r), so that

3
Ho nxf dr —

Brad= - (65)

4mcr ot'’
Now noting d¢'/dt=1, the derivative may be pulled out,

Mo 0 x 9
darcr ot
1 dA 4

——n X
c ot

Brad=_ d3r’J(r’,t')=

©6.6)

These equations also show E_4=—3A_,,/d¢ as it should.

In any gauge, if A4 is nonzero, B 4 and E, 4 are also
nonzero. Unlike the static A, the radiated vector potential
cannot, of course, be separated from its fields. That is, there
is no such thing as a “radiated curl-free vector potential”
occasionally referred to. It is easily shown that V-A_,;=0, so
that A_,4 is a transverse vector.

The discussion so far is completely general, applying to
any current distribution.

As a rule, if a current increases in time from zero to a
nonzero steady value, radiation is produced that leaves be-
hind the static field of the nonzero current. When / was
turned on for the torus, radiated A, E, and B propagated out,
leaving behind a nonzero static A, and a static B which hap-
pens to have value 0. The static A outside a torus is only
accidentally curl-free because of high-symmetry geometry.

N. J. Carron 721



Fig. 7. Resistive wire loop through a torus.

As shown in Sec. VII it is more fundamentally to be consid-
ered a transverse vector, with the defining property of being
divergence-free everywhere.

B. Physical argument for radiation

It is instructive to understand physically why a system that
encloses magnetic flux in an area that can be “looped” must
radiate. Consider a resistive test wire that encircles the torus
limb in a closed loop as in Fig. 7. Let R be the full resistance
of the wire. When the torus current I varies, so does the
magnetic flux @ in the torus interior, and an emf

I
= ¢ dlE=-—

6.7
wire (9t ( )

is produced, according to Faraday’s law. A current &/R flows
in the test wire. The electrons in the wire know to move
because the induced electric field drives them.

All electromagnetic disturbances start where VX J#0, in
this case on the torus windings. The only way E can get to
the wire is by propagating from the torus to the wire. This
propagation, catried to larger distances, is radiation.

If the torus and test wire are of very great radius L, then a
propagation time of order L/c is necessary before E gets to
the wire. But since Eq. (6.7) holds instantaneously, the radi-
ated magnetic flux through the big wire loop is equal and
opposite to the quasistatic flux inside the torus limb until the
radiation front gets to the wire. It is only after the radiated
fields pass that ® in Eq. (6.7) can be taken to be the usual
interior quasistatic flux. Only 1/r fields can account for the
necessary emf. Radiation from a torus has been discussed by
Baum.'*

It is interesting to note that, from Eq. (6.7), and from Eq.
(3.8), which holds for time varying conditions as well, the
wire current is

§= l i dl-E=— l §3 dl- %, (6.8)
R R R Jwire ot
so the total charge moved through the wire is
&(1) 1
Q)= f —d =—= édLA. (6.9)

That is, displaced charge is as much a direct measure of
$dl-A as current is of $dl-E. From this point of view A
could be considered just as real a physical variable as E.
Feynman'® stresses how A may be considered physically real
in spite of the arbitrariness in its divergence.

Parallel to the fact that only VXA enters Maxwell’s equa-
tions and V-A is arbitrary, it is worth noting that only the
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divergence of the energy flux S=EXH (Poynting vector)
enters the energy conservation law that follows from Max-
well’s equations; VX8 is arbitrary. S itself is arbitrary to the
extent that the curl of any vector may be added to it. Yet we
are quite accustomed to thinking of S as physically real. An
arbitrary additive curl or gradient need not prevent a vector
from being considered real. Konopinski'® discusses how in
classical electromagnetism A may be considered the poten-
tial momentum per unit charge of a particle in external fields,
just as ¢ is the potential energy per unit charge.

C. Explicit radiated fields

To compute the radiated fields, we directly evaluate Eq.
(6.1) for a harmonic toroidal current. For frequency w, J is

I o
J(r,t’)= — 6(s—a)e_“‘” a, (6.10)
where & is the unit vector in the derCthn of i mcreasmg a

(Flg 1). In Eq. (6.1) the s integral in d°r'=p' d¢' ds sda
is trivial, leaving

/‘LO JZTr 27 it
A q(r' )= yymp y— f da ae . (6.11)

nt', [r—r'| is expanded

r 1
t'=t-—;+;n-r'+0(r’2/cr) (6.12)
so the integral in Eq. (6.11) becomes
e_i‘”TJ d(p’f da e %7 (6.13)

where 7=t—r/c is the observer’s retarded time, and k= (w/
¢)n. We have

a=—(% cos '+ sin ¢’')sina+2 cos a (6.14)

and

k-r'=k[(b+a cos a)cos(¢— ¢’ )sin §+a sin a cos 6],
(6.15)

where 8,¢ are those of the observer.

Equations (6.14) and (6.15) are to be inserted in Eq.
(6.13). Rather than grapple with the resultant integrals we
proceed with a low-frequency approximation kb<<1. When
the exponenual in the 1ntegrand in Eq. (6.13) is expanded,
exp(—ik-r')=1—ik-r'—(k-r')*2%... it is easy to show the
first two terms do not contribute to Eq. (6.13), and the re-
maining integral is trivial. One finds,

27 27 . o
do' da ae™ ¥
0 0

= 1r’k?ab sin O(x cos @ cos ¢+ 3 cos 8 sin @
— 3 sin 6)= w2k2ab sin 8. (6.16)

Then, if we call the time-dependent current [, to lowest
nonvanishing order in kb the radiated A of a torus is, except
for phase,

2
o KV
T dgmr sin 66,

a factor of order (I ,o/I)(kr)® times the static A equation
(3.5) in the same (Lorentz) gauge. Fields are

(6.17)
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Fig. 8. Exaggerated model of vertical torus currents.
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Radiated field amplitude is proportional to torus volume.
The field pattern is that of an electric dipole. However the
fields are proportional to ® rather than w”. Physically, the
origin of the fields is as follows. The torus of Fig. 1 has a
current I flowing in the +z direction at p=b+a, and I flow-
ing in the —z direction at p=b—a, with connecting paths
above and below. Exaggerating the radii, Fig. 8 sketches a
ring of upward flowing current balanced by a downward
flowing current on axis, If ] varies in time, both the center
and the outer ring currents will radiate like individual electric
dipoles. The electric dipole moment of the entire configura-
tion is zero, since the charge displaced by one current is
taken by the other. Since the sources are of different dimen-
sions, their radiated fields do not cancel. Rather, the net field
is proportional to ka, the separation relative to a wavelength.
This explains the extra power of @ and of a in the radiated
fields relative to an ordinary electric dipole.

One is reminded that even two simple dipoles, separated
by d as in Fig. 9, together having zero dipole moment, will
radiate an electric dipole field at frequencies w=c/d. At
lower frequencies the quadrupole field dominates, the elec-
tric dipole part being smaller by a factor of order wd/c.

sin 0= —cF xB . (6.18)

D. Multipole coefficients

It is curious that all electric and magnetic multipole mo-
ments of a toroidal current distribution vanish, and yet qua-
sistatic fields and radiation do not.

The general theory of multipole radiation [e.g., Jackson;!’
Chap. 16] relates radiated fields to sources. The relevant
source parameters are the electric and magnetic multipole
coefficients, different from multipole moments in that they
account for retardation across the source. Multipole moments
form a complete set for static charge-current distributions,
multipole coefficients for the time varying case.

All magnetic multipole coefficients vanish for the torus,
but the electric coefficients are nonzero. The electric coeffi-
cients ag(l,m) are given in Jackson,'” Eq. (16.91), and con-
tain a contribution from charge density p, current density J,
and intrinsic magnetization M. The term in p corresponds to

b

Fig. 9. Two nearby small dipoles.
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the usual electric multipole moment when kr <1 [generalized
to include the radial radiation function j,(kr)], and vanishes
for a torus, as does the term in M.

The term in J is not zero. The extra factor kr in this term
accounts for the destructive interference from opposite sides
of closed loop currents. The lowest coefficient is =1, m=0,
and corresponds precisely to the previous explanation in
terms of equal up and down currents at different radii. It is
readily evaluated for the case kb<<1, and results in a radiated
field equal to our Eq. (6.18).

The general expression for ay(l/,m) shows that a system
with p=J=0, but with nonvanishing time varying M, also
produces electric dipole radiation.

There is no general formalism expressing quasistatic fields
in terms of source moments as there is for static and radia-
tion fields. By explicit calculation one finds quasistatic fields
of a torus are nonzero and given by Egs. (5.6).

VII. GAUGE TRANSFORMATIONS AND SOURCES

Due to the arbitrariness arising from a gauge transforma-
tion, only certain parts of A are in principle measurable. One
needs to inquire how A is related to current sources, since
classically the sole raison d’etre of A is to have its curl equal
to B. The longitudinal part of A can be combined with the
scalar potential ¢, while the transverse part retains its iden-
tity and is measurable.

The source-free Maxwell equations (Faraday’s law, and
the absence of magnetic monopoles) serve to define the fields
in terms of the potentials, and the two equations with sources
(Ampere’s and Gauss’ laws) become dynamical equations
determining the potentials. If we make the transformation

A—A=A1+Vy,
d1— =1~ X, (7.1)

where x is an arbitrary function, gauge invariance assures
that x drops out of the dynamical equations altogether and
has no physical meaning,.

A. Transverse and longitudinal fields

The relation VXA=B and the arbitrariness in V-A sug-
gest writing all fields in their transverse (solenoidal) and lon-
gitudinal (irrotational) parts.!® Thus, for A,

A=AT+AL,
VXAr=VxA=B, VxA;=0,
V.Ar=0, V-:A;=V.A=arbitrary.

If two vectors are equal, their transverse and longitudinal
parts are separately equal. Then, decomposing E, B, and J
into their parts, Maxwell’s equations can be written

(7.2)

By
B,=0, VXE;+—=0;

ot
V-E.=p/€, (7.3)
VXBT_“lfa—ET=M0JT, —lfﬂ‘_'ﬂoh'
¢ ot c* ot ’
with charge conservation
ap
V-JL+E=0. (7.4)
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B. Maxwell’s equations without gauge transformations

Now introduce the usual potentials A and ¢:
BT= v XAT ;

oA IA,
Er=——, E=——=-V¢.

Pt (7.5)

Only A; and ¢ are affected by a gauge transformation, with
E; left unchanged. A; can always be written in terms of a
scalar xg, A; =Vyxy, so that E; can be expressed as

EL == V (//, (7‘6)
where
Y=o+ xo (1.7

is a gauge invariant scalar potential with only an additive
constant arbitrary. By itself A; is physically irrelevant, being
a matter of gauge choice and having no relation to sources. It
can be fully subsumed in the definition of the scalar potential
in a gauge invariant way, and only ¢ and Ay survive. In
terms of them Maxwell’s equations are

BTZVXAT, BL=0,
E=-2T p=-v
T— o’ L= ‘/I’

p
2,__ P,
viy--2,

J Jr

OAr=— pod7r, EVIII:E_O’ (7.8)

where =V?—(1/c?)é*/ar>.

Since A; has been combined with ¢, the last equation for
¢ is redundant and may be dropped. It is equivalent to the
remaining Poisson equation and the continuity equation
(7.4). The Poisson equation for i, and wave equation for Ay,
are the same as the usual equations for ¢ and A in the Cou-
lomb gauge, with the significant difference that now there
has been no specification of gauge. Every quantity in Eq.
(7.8) is gauge independent.

With Maxwell’s equations in this form there is no longer
any arbitrariness in the potentials, and the questions of gauge
transformations or gauge invariance do not arise. Further,
longitudinal sources, fields, and potentials completely de-
couple from transverse ones.

Maxwell’s equations are usually not formulated this way.
Most theories insist on, and build in, relativistic invariance,
and separately inquire as to gauge invariance. In contrast, the
above equations build in gauge invariance (indeed, gauge
irrelevance), but are not manifestly Lorentz invariant. The
very division into transverse and longitudinal parts is not
Lorentz invariant. However the formulation can be conve-
nient for analysis of a given experiment in one reference
frame.

J. gives rise only to ¢. J; gives rise only to Ay. Closed
current loops, for example, which are commonly well ap-
proximated as divergenceless, especially at low frequencies,
are transverse currents, and produce only Ay and transverse
fields. In this same approximation, the complete fields of a
torus with time-dependent current are purely transverse.

The discussion following Eq. (6.6), that A, cannot be
separated from its fields, left open the possibility that the
longitudinal part of A might be separable from its fields. But
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A; , and the field associated with it, is a gauge artifice that is
eliminated in Eq. (7.8), and has no physical meaning.

The static A of a torus, Eq. (3.5), is related to the source
current. This A is a transverse vector for which V-A=0 ev-
erywhere and which happens to have VXA=0 outside the
torus (but VXA+0 inside). It is locally curl-free due to high
symmetry.

These equations make it clear that it is only the transverse
part of the current source that produces radiation. This same
result is apparent from the usual wave equation for B

OB=-— ,lLOv XJ= _/.Lov XJT

that follows from Maxwell’s equations.

(7.9)

VIII. CONDUCTORS AS SHIELDS

We inquire as to the effectiveness of conducting enclo-
sures in shielding the vector potential.

A. Boundary conditions on A

Boundary conditions on A are conventionally derived!® by
applying the usual Gaussian pill box or Stokes loop over an
interface between two media. But they can be obtained more
directly from those on B by using the symmetry observed in
Sec. II.

Since the normal component B, of B is continuous at an
interface, and since this B is the A of a different problem, the
normal component A, of A is continuous also. Actually, for
the general case, the discontinuity in A, is formally gauge-
dependent, since V-A need not vanish at the surface. But so
long as the gauge is such that the volume integral of V-A
across the surface remains zero, then A, is continuous.

Similarly, that the tangential component By is discontinu-
ous by the normal integral of J means the tangential compo-
nent A is continuous unless there is a delta function sheet of
B on the surface. Excluding this unphysical condition, we
have that all three components of A are continuous at an
interface between two media with different €, i, and o, even
across a dielectric—conductor interface on which there may
be a single-layer current sheet.

The normal derivative of Ay is not continuous if there is a
skin current, and is determined by the usual boundary con-
ditions on By. The discontinuity of E, at a surface charge
density shows up in the potentials as a discontinuity in the
normal component of V.

B. Conductor moving through field-free region

If a conductor is moved through a region of space where
E=B=0, but A#0, there are no physical effects, for there
are no forces to produce any. Since A is continuous across
the conductor surface, A effectively penetrates freely through
the conductor.

To an observer at rest on the conductor, A is changing in
time at a rate dA/dt=v-VA, where v is the conductor veloc-
ity. By a Lorentz transformation, the observer sees a scalar
potential ¢=—v-A, just such as to keep E=—JA/9t—V ¢
equal to zero.

C. Shielding by a perfectly conducting enclosure

Consider a localized current distribution with its attendant
vector potential with B=0. We enclose it in a conducting
shield. Two “‘experiments” are considered:
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Fig. 10. Torus shielded by a larger torus.

(1) The current and vector potential are pre-established and
the shield box is erected around the source in the space
where A#0.

(2) The shield box is constructed while the source is off,
then the source is turned on.

We will choose a torus for the source.

1. Pre-established dc field

With a steady current flowing, A is nonzero outside. As
the conductors are assembled, they move in the space
through A. A passes freely through the metal pieces; there is
no interaction between A and the conductors. We end up
with the torus with its unperturbed static A, enclosed by a
conducting box, with A#0 inside and outside the box. A has
no way of knowing that the shield box was built.

2. dc field turned on after shield is built

In this case we erect the shield box around the dead torus,
then turn the current on. The shield interrupts A, E, and B
that are propagating out. So that concepts are not clouded by
noncompatible geometries, choose for the box a concentric
torus.

E, B, and A remain zero inside the shield metal. There-
fore, on the inner surface of the shield, E, A, and B, also
remain zero. Surface currents which terminate By are gener-
ated on the inner shield surface. The space between the driv-
ing torus and the shield torus is filled with B and A.

If I is suddenly turned on and then held constant, the final
static configuration is as shown in Fig. 10. A skin current
flows on the inner surface of the shield, in the opposite di-
rection of the driving current. An azimuthal B field persists
within the shield box, opposite the main B in the driving
torus, so that the total flux through the large torus arm stays
zero. The static A is in the toroidal direction between the two
tori, but is O at the shield. A, E, and B all vanish outside the
shield. The box shields A as well as the fields.

There is thus a significant difference according as the
shielding enclosure is constructed after or before the driving
current is activated. In the former case, the static A is non-
zero outside the shield, but in the latter case it stays zero.

If the enclosing box is a finite conductor, currents and
fields diffuse into the metal and penetrate the shield of thick-
ness d after a time of order

t4= pood? (8.1)
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Fig. 11. Hierarchy of current distributions based on torus.

(t;~180 us for 2 mm thick Al). After this time, A will ap-
pear outside the “shield box,” and the exterior dc vector
potential will have been established.

IX. VARIATIONS ON A THEME

The observations in Sec. II lead to a physically meaningful
hierarchy of static current configurations.

A. Hierarchy of J, B, A

Consider the current distribution of the torus, Fig. 1, re-
drawn in Fig. 11(2). Call its current J,, field B,, and vector
potential A,.

Construct a new current distribution J;=B, having only an
azimuthal (¢) component. This is the current of an ordinary
current loop (except that J; drops off as 1/p within the loop).
Its field B, will be B;=A,. Its vector potential must be com-
puted anew. A, is also azimuthal, and lines of A, form circles
about the z axis in space, as sketched in Fig. 11(3).

Continuing, construct J,=B;. This current distribution
would be that of the discharge current of a battery immersed
in a partially conducting fluid. The associated magnetic field
is B4=A;, being circles about the axis, encircling lines of J,.
The vector potential A, would have a field line pattern close
to that of J,.

Proceeding in the opposite direction, from configuration
(2) invent a current distribution J,xVxJ, whose field
B,=1J,, and vector potential A;=B,. This is the azimuthal
double-layer current sheet discussed in Sec. IV, whose field
and vector potential vanish outside the torus. It is sketched in
Fig. 11(1).

One could go one step further and construct four alternat-
ing layers of toroidal currents, J,,, confining B, to be the
same double layer as J;. Ay would be like B, confined to a
thin toroidal sheet, the same as J,. A, B, and J vanish inside
and outside the torus.

Developments similar to this can be based on a common
cylindrical solenoid or any other current distribution. The
hierarchy is summarized by
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By

Fig. 12. Toroidal coax line.

Jm-er = VXJl
Bm...= J1 = vaz
A,..= B = J, = VxJ,
A, = B, = Ju = ...Vx],
A, = B, = ..da
Az = B,
A,

which is written more succinctly in Eq. (2.11).

B. Toroidal coax

In the configuration of Fig. 11(1), one can separate the
inner current sheet from the outer one, collapsing it to an
inner wire ring concentric with the torus limb, as in Fig. 12.
One has a toroidal coax line. J and A are azimuthal, A being
nonzero both inside the inner conductor, and between the
inner and outer one. B is in the “toroidal” direction, confined
to between the inner conductor and outer “shield,” being the
magnetic field of an ordinary coax line. A vanishes outside
the entire configuration and inside at the outer conductor.

As the inner wire is an ordinary current loop, this configu-
ration is a “shielded current loop.” The shield is an ordinary
(perfect) conductor and shields both A and B. The same is
true for ordinary straight coax cables.

X. A SYMMETRY OF MAXWELL’S EQUATIONS

It is interesting to inquire whether the magnetostatic ob-
servations of Sec. I on the J, B, A hierarchy can be extended
to time varying currents and fields.

Due to the general relations B=VxA, V-A=0, and the
static relation J=V XB, as well as V-B=0, we have for the
arbitrary time dependent case,

The vector potential A,(r,z) of any current distribution
J,(r,t) with field B,(r,?) is the same as the instantaneous
static magnetic field B,(r,t) of a current J,(r,?) instanta-
neously equal to B,(r,z).

Here A, is in the Coulomb gauge. It appears this rule cannot
be extended to develop a hierarchy of J, B, A configurations
in parallel with the static case since the displacement current
destroys the analogy. But a closely related hierarchy still
holds.

In the Lorentz gauge Maxwell’s equations are
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JA
B=VxA, E=-—-Vg,

) (10.1)
DA=_,LL()J, D¢=——.

€0
Let these hold for a current J; with fields E,, B,, and poten-
tials A, ¢&;.
Form the new current

J,=Vx];, V.]J,=0. (10.2)
Clearly, its potentials are
A=V XA, =B,
$>=0. (10.3)
The associated fields are
E— dA; aBl_v E
2= = VB
JE,
BZZVXA2=VXB1=[L0 J1+607 . (10.4)
In summary,
J J
B B
E =V x E , (10.5)
A A

(2) (1)

a complete parallel to the magnetostatic case (2.11). Even for
full time dependence the curl of one set of currents, fields,
and potentials is another set, so that a solution for one J
provides the solution for other problems. That this should be
true for Maxwell’s equations is less obvious than for magne-
tostatics, although it follows as well simply by taking the
curl of Maxwell’s field equations. It differs from magneto-
statics in that E¥0, and V XB is no longer J, so the hierarchy
is not as tight. This is made more explicit by writing Eq.
(10.5) as

J2 v XJl 0

B | oK, /ot

E |~ o || -aBya| (10.6)
A, B, 0

in which we have dropped factors of i, and ¢ in the second
line for simplicity. A problem-specific numerical coefficient
with dimension of length should also appear multiplying the
right-hand sides of Eqs. (10.5) and (10.6). Based on any
given J(r,t) one can develop a hierarchy of physical current
and field distributions in parallel with the magnetostatics
case.

A. Fields of a rotating torus

One instance in which this symmetry is useful is in com-
puting the fields of a rotating torus.

Let a dc current flow in the torus windings of Fig. 1.
Suppose the current is delivered to the windings by slip rings
so the torus is free to rotate about, say, the y axis, maintain-
ing its dc current. (Or we could imagine a superconducting
arrangement, with no need to drive the currents once estab-
lished.) When stationary, there is a vector potential, but no
fields, outside. When the torus is spinning, are there external
fields?
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Clearly there are, for to an external observer the static
A also rotates, producing nonzero E=—JA/dt, without a
canceling —V¢. Since JE/dt is also nonzero,
VxB=(1/c*)JE/dt#0, and therefore B does not vanish out-
side. An oscillating EMF is generated around a fixed loop in,
say, the x=0 plane that encircles the torus limb in its original
position. A rotating torus carrying a dc current possesses
nonzero near zone fields. It also radiates. The question is
how to calculate the fields. The symmetry discussed above is
quite powerful in this regard, and makes the task easy.

The surface current density on the torus is the curl of the
current density of an ordinary current loop with the same
dimensions. According to Eq. (10.5) then, the exact fields
and potential of the rotating torus are precisely the curl of the
corresponding fields and potential of a spinning current loop.
These latter fields are not difficult to compute. Here we
sketch only the radiation fields.

More precisely, a torus wound with N turns carrying total
current /=i,N, has a current density J proportional to the
curl of the current density J' of a loop carrying current
I'=ma®]':

J=xkVX]J, (10.7)

The coefficient « should appear multiplying the right-hand
side of (10.5) and (10.6).

A loop of radius b, of thin wire with radius a <%b, carrying
current I’ has a magnetic moment m = 7b2I’. When rotating
with angular velocity w in the positive sense about y its
components are

m,=m cos wt, m,=m sin wt. (10.8)
Each of these is in turn the magnetic moment of a stationary
loop with oscillating current. Each radiated electric field is of
the standard form, and the total is the superposition of the
two:

loop _

Eo=ER+EF),
(x) Mg ©°m ithkr—wt) o -

Ei=—i i o ¢ sin 6,¢,, (10.9)
(2) Mo w2m i(kr— . a

Erad= - E cr el( Tt sm 0z‘Pz,

where the real part is understood. Here 8, and ¢, are the
usual polar and azimuthal angles in spherical coordinates
defined on the z axis, and 6, and ¢, are those of a spherical
system defined on the x axis. The magnetic field is

1,
BloP= - Bx El°P, (10.10)

For these, as for any radiation fields,

Brad

d
V X Erad: - ot

w ~
=iwB =i — FXEpq. (10.11)

Then, using 7 X $,= — 8, etc., the radiated field of a spin-
ning torus comes out
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Etorus= «V X Eloop

tad rad

— 1
=ikwBoy

toc VT e'®r ! . ;
=TI [—sin 6,6,+i sin 6,6,].

(10.12)

« has been replaced using km=(ma’*b/2)I=(V/4m)I. The
full radiation pattern can be mapped from Eq. (10.12). As for
a loop, this is the field of two stationary perpendicular
toruses carrying oscillating currents, each with fields of the
form (6.18).

For an observer on the rotation axis (+y), for example,
sin §,=sin 6,=1, §,= —x, 6,= —Z, and
oC Vk3] ei(kr-—wt)

(x=0,y=r,z=0)= — ——

torus
E 4 4 r

rad

[x—iz].
(10.13)

Radiation in the +y direction is right-circularly polarized.

One can similarly compute the quasistatic fields of a spin-
ning torus from those of a spinning loop.

The energy of the torus consists of its rotational kinetic
energy plus the magnetic field energy inside; these supply the
energy radiated. The kinetic energy is an artifact of the mass
of material chosen for fabrication, and can in principle be
made as small as desired. Therefore, the energy radiated
comes from the enclosed magnetostatic field energy. Due to
radiation the dc current of a spinning torus will decay.

This example has been illustrative only. One can employ
the symmetry noted in this section to problems less academic
than a rotating torus.
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APPENDIX A. EXACT FIELDS OF A TORUS

The complete vector potential and fields of a harmonically
driven torus may be computed to arbitrary accuracy by ex-
panding in small parameters.

The full expression for A(r,t) in the Lorentz gauge is Eq.
(5.3). Taking

J(rl,tr)ze—iwt'J(rf):e-—iwteik|r—r’|J(rI) (A1)
and A=A (r)e ', then
iklr—r’|
zﬂ 3.0 '
A= 12 [ et T aen, *2)

V-A=0, and since V-J=0, the scalar potential vanishes. We
consider only r>b and kb<1, but expressions will be valid
in the near zone kr<1, or far zone kr>>1. When kb=1,
azimuthal asymmetries arise due to propagation time delays
around the torus when driven at one point. We do not take
into account these asymmetries.

The dependence on r and 7’ is separated using the stan-
dard expansion

eiklr—r’| ®©
=ik >, 27+ 1)j kr YWD(kr)PAp), r>r',
£=0
(A3)

[r—r'|
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where j . is the spherical Bessel function, P, is the Legendre
polynomial, and u=cos(r,r’). Powers of kr are explicit be-
cause the Hankel function

ikr £

(£+q)! i \?
h(l) kr)y= — — —_— .
W= & a-a ( ) “y
Then,
ikr *® z
M€ 144
Ao=im 7 2,502 f/q( ;) , (A5)
where
SA0= [ &'} (kP A (46)
characterizes the source and observer angle, and
2/+1 +q)!
( ) (F+q) A7)

a7 g1(Z g

S (k)=(kb)'G,, />0 (A8)

with G/—G/(k) inde 2pendent of k to lowest order. The only
exception is S0°<(kb) Using this in (AS) and interchanging
summations gives

=, kb)”
A=20c [fooso+2 Z,, G/f/,,((,T;q], (A9)

47 r

where the prime means the /=0 term is deleted from the
sum. Now setting /=g + j,

ikr
Ho €
A,= P [fooso"'z

9
2, Carif 1. kD) ]( ) ]
(A10)

This is an explicit series in powers of b/r with coefficients
that are rapidly converging series in kb.

It is not difficult to show that the combination of azi-
muthal symmetry and reflection symmetry in the z=0 plane
implies

Since for small argument j (kr')=(kr')’/2/+1)1, SAK)=GAk)=0, ¢ odd (A1)
Equation (A6) shows so that only even indices survive in (A10):
|
Lo zkr ® b 2 ®
A= — [fooso‘*‘ 2 Gosfarolkb)* +~ 2 Gaorfar (kb)Y 1 +| —| 2 Gaufar a(kb)* 2
=1
b\* & > b\t & b\> &
=] 2 Gosforakb) | = B Gopfors(kby 4| = T Gofars(kb) 5. (A12)
r; /=2 r; /=2 r; /=3
|
A,, contains all powers of 1/r, but as k—0 the static vector a2l
potential So=(kb)?*Gy= (kb)2 (cos 87 —sin 00) (A16)
_ Mo 1((b)\? ¢
P [(—) Gyfsn+ Gyfqqt--- (A13) Then, taking the f’s from (A7), one gets
wr|\r
contains only odd inverse powers of r. At )_ ~° e i@U=rIO[ (1 —ikr)(2 cos 67
The first few terms of (A12) are 4 4arr’
wo € , b +sin #8) — k2r% sin 68, (A17)
Aw_4 fooSot f20G2(kb)*+ — [f21G,(kb)
T r plus smaller terms of higher order in b/r and kb. Here

2
[£22G2+ f42Galkb)?]

b

+ f41G4(kb)*]+ -
b 3

+(;) [f43Ga(kb)+ f53Gs(kb)* ]+ O((kb)*)

+O((b/r)4)]. (A14)
In evaluating the higher powers, the k dependence of G,
must be included. G, has already been evaluated, since ac-
cording to (A13) it is determined by the static 1/r” potential,
which was obtained in Sec. III. Comparing the first term of
(A13) with (3.5) gives
2

(2 cos 67 +sin 66), (A15)

G, = a
[22Go= b
and direct evaluation shows
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V=2m2a’b=torus volume.

The first term (1) in square brackets is the lowest order
static vector potential, separately obtained in Eq. (3 5) The
ikr term is the “inductive” potential. The term in k%72 is the
radiated potential, previously obtained in Eq. (6.17).

The fields to the same order are

oA
E=——=iwA,

Y (A18)

having terms behaving as ol/r3, @*I/r?, and w’I/r; and
_ _ Mo Vi —iw(t—r/c) K ; : )
B=VxA= yymypt 7z [1—ikr]sin 8¢,
(A19)

behaving as w?I/r? and w’1/r.
In the near zone, the quasistatic magnetic and electric
fields, given in (5.6), are related by Eq. (5.7).
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We describe the construction and operation of stabilized 670 nm diode lasers for use in
undergraduate teaching labs. Because they emit low-power visible radiation, 670 nm lasers are safe
and aesthetically pleasing, and thus are an attractive alternative to near-infrared diode lasers in the
undergraduate laboratory. We also describe the fabrication of a robust and reliable lithium atomic
vapor cell, which can be used with the 670 nm diode lasers to perform a variety of atomic physics
experiments. © 1995 American Association of Physics Teachers.

L. INTRODUCTION

As inexpensive sources of narrowband tunable coherent
light, semiconductor diode lasers are becoming important re-
search tools with widespread applications in modern aca-
demic and industrial laboratories. Because of their relatively
low cost (compared to other tunable laser sources) they are
also well-suited for incorporation into undergraduate teach-
ing labs. By scanning the laser emission over atomic or mo-
lecular resonance lines, a variety of interesting and funda-
mental physics experiments can be performed.
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A recent paper by MacAdam et al.! describes several tech-
niques for constructing and operating stabilized diode lasers
for the undergraduate laboratory. These lasers operate in the
near infrared, at 780 or 852 nm, and can be tuned to scan
over various rubidium or cesium resonance lines, respec-
tively. Unfortunately, radiation at these wavelengths is al-
most completely invisible to the human eye, which creates
several problems when incorporating near-IR lasers into un-
dergraduate labs. A primary concern is safety, since even a
milliwatt of laser radiation can cause irreparable eye damage.
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